会员
这就是推荐系统:核心技术原理与企业应用
胡澜涛等更新时间:2023-12-12 19:10:50
最新章节:封底开会员,本书免费读 >
推荐系统作为近年来非常热门的AI技术落地场景,已广泛应用于各行业的互联网应用,从衣食住行到娱乐消费,以及无处不在的广告,背后都依赖推荐系统的决策。本书贴合工业级推荐系统,以推荐系统的整体技术框架为切入点,深入剖析推荐系统中的内容理解、用户画像、召回、排序、重排等核心模块,介绍每个模块的核心技术和业界应用,并展开介绍了推荐冷启动、推荐偏置与消偏等常见问题和解决方案。此外,还对当前推荐系统领域的热门前沿技术进行了介绍,包括强化学习、因果推断、端上智能等。
上架时间:2023-05-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
这就是推荐系统:核心技术原理与企业应用最新章节
查看全部胡澜涛等
主页
同类热门书
最新上架
- 会员
巧用ChatGPT进行数据分析与挖掘
这既是一本引导读者如何使用ChatGPT低门槛、高效率学习Python数据分析与挖掘方法的著作,又是一本指导读者如何使用ChatGPT精准、高效地进行Python数据分析与挖掘实操的著作。从读者对象的角度看,本书既大大降低了没有编程经验的读者学习Python数据分析的门槛,又为有经验的Python数据分析师提供了大量实用的AI数据分析技巧,帮助他们快速转型为具备AI能力的数据分析师。从核心内容的角计算机16.9万字 - 会员
Python视觉分析应用案例实战
本书以Python3.10.7为平台,以实际应用为背景,通过概念、公式、经典应用相结合的形式,深入浅出地介绍了Python图形图像处理经典实现。全书共10章,主要包括绪论、迈进Python、Python图形用户界面、数据可视化分析、图像视觉增强分析、图像视觉复原分析、图像视觉几何变换与校正分析、图像视觉分割技术分析、图像视觉描述与特征提取分析、车牌识别分析等内容。通过本书的学习,读者可领略到Py计算机12.3万字 - 会员
破解深度学习(基础篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字 - 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI计算机15.8万字 - 会员
AI数字人原理与实现
本书是一部系统介绍AI数字人技术的专业著作,涵盖了数字人的定义、发展历程、关键技术及应用实践等内容,全书共分3部分。在技术基础部分,首先介绍了数字人的定义、发展历程、分类和应用场景,接着详细解析了数字人系统的架构设计、视觉算法和语音合成技术的原理,以及语义理解和知识表示技术如何提升数字人的智能和表现力。在应用实践部分,带领读者深入探索数字人的创作流程,从内容策划、角色建模到交互设计,每一步都进行了计算机26.2万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
机器学习中的统计思维(Python实现)
机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。计算机18万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容计算机30.2万字 - 会员
奇点到来:AIGC引爆增长新范式
增长是企业利用计算机、大数据、人工智能等新技术实现经营增长的新思路和新方法,本书作为该领域的入门级读物,介绍了AIGC在增长领域的技术和实战应用。本书分为4部分,第1部分、第2部分、第4部分主要针对有兴趣了解AIGC背后技术原理、增长模式的变化以及截至2023年3月业界、学术界的最新技术进展的读者;第3部分包含AI的基础知识、基础模型,并从实战应用角度介绍作为应用开发者如何高效上手与利用最新的开源计算机21.9万字