![高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/582/26179582/b_26179582.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.2 反函数的求导法则
已经解决了对数函数和三角函数的求导公式,下面需要解决它们的反函数指数函数和反三角函数的求导,为此给出如下定理.
定理2 如果函数x=φ(y)在区间I内单调、可导,且φ(y)′≠0,则其反函数y=f(x)在相应区间内也可导,且
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058002.jpg?sign=1739982341-cIqoG1fUDIJYpnDakUy7jYNY1V0pN0fN-0-5f22c08c8fcf7b0b85873b2bc6858cf5)
证明由于互为反函数x=φ(y)与y=f(x)在各自相应的区间内单调性是一致的,所以,当Δx≠0时,Δy≠0,则
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058003.jpg?sign=1739982341-IXiSulMDDcinOZXUPZ99TKmDuEo2YAjl-0-090ea9789220b431ab3434d0c578a1bf)
函数x=φ(y)在区间I内可导且φ(y)′≠0,则函数x=φ(y)在区间I内必连续,则其反函数y=f(x)在相应区间内也连续,即当Δx→0时,Δy→0,所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058004.jpg?sign=1739982341-lY2TJVYGIcgXeHzbooSXR9LwLlBoLpyn-0-dab42a3fb7be98d4d7bd111e919a177b)
即
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058005.jpg?sign=1739982341-FfqCd7OsW52u67jlLvb76qcVba814tpA-0-fa83223e28ee3130d6a0ed46dc7923c4)
简言之,某函数反函数的导数等于该函数导数的倒数.
例6 求函数y=arcsinx和y=arctanx的导数.
解 因为y=arcsinx(-1<x<1)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058008.jpg?sign=1739982341-PgMiu67yFpYuczzmw1MNfuaUXg07e1rQ-0-b5bbca1bbbe09053cfcf2587aeb2be5f)
因为y=arctanx(-∞<x<+∞)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059001.jpg?sign=1739982341-mbJdygbHF0K4SXGA492oQVy2DA9cpPAF-0-8cf815fc38126af9713cd832f97cfc82)
所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059002.jpg?sign=1739982341-Jf2cTQ9sIuFysi0DQ9mMg8fbpw3HnLQJ-0-48dd3f4aa4928f1e2283d4fbc36249db)
同理可推得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059003.jpg?sign=1739982341-yEwXtQzbgTigWBbkOjBO8V5mCgScIWaK-0-7753d45fa22fdbad4e5b9a62f8a5c5c6)
例7 求函数的导数.
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059005.jpg?sign=1739982341-pSi5YirEyRchB1UPDArcpWQM6r5IxW0T-0-b9e326a42f52ed99afa0260806353731)