![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.2 矩阵的加法、乘法和矩阵的转置
1. 矩阵的加法
设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8145.jpg?sign=1738850039-GW9CMJoNMlcYaloaae2GUgS9GvFaGg72-0-29c97221f24be4ff810a1a09f254d484)
是两个s×n矩阵,则s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8146.jpg?sign=1738850039-NnohQef7xZa0vEBn0binCsp697UOuKGY-0-b07254d3079f5d8213767340997f5ef2)
称为A和B的和,记作
C=A+B
从定义可以看出:两个矩阵必须在行数与列数分别相同的情况下才能相加。
【手工计算例5】
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8149.jpg?sign=1738850039-ecMRVdtD1pLlcy2zdJKPu2AspoKy05dE-0-e531c0e9504cfdb43431e9465e45c9b7)
2. 矩阵的乘法
定义矩阵的乘法如下:
设A是一个s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8151.jpg?sign=1738850039-WIYsCuekMdIp1NdWyNG0aTnzmdGI5Pak-0-3da4dd596732291d1a4814462c46a3a9)
B是一个n×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8152.jpg?sign=1738850039-BBiiXvjN8gl16fCi5ps0rGUvJrL47PJ3-0-301f4b3fb575e5432253bbe8198ed372)
作s×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8153.jpg?sign=1738850039-ESSXjbGafUXB8OcHP078t6Qo0Y3Yysp2-0-7cb5b2ad8b97399eea5d3ff81c3a0ebe)
其中,
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8154.jpg?sign=1738850039-0EDvLM1pn6v7i28xKRLc8xgmja7tb48G-0-bf150a4dd181445e36e152d635a9c3ae)
矩阵C称为矩阵A与B的乘积,记为
C=AB
注意:在矩阵乘积的定义中,要求第1个矩阵的列数必须等于第2个矩阵的行数。
【手工计算例6】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8157.jpg?sign=1738850039-echwehKmGvj2LB3ZwC7rDH0cYSoYH4jn-0-0fa73b5f12e1ee8c3388f7407928927d)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8158.jpg?sign=1738850039-YW2BPbUYdv39rstsubvkVWJGZTn2rRlD-0-b700c2b333d67b915c86e9693460636a)
矩阵的乘法与数的乘法有一个重要区别:就是矩阵的乘法不满足交换律,也就是说,矩阵的乘积AB与BA不一定相等。看下面的例子。
【手工计算例7】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8161.jpg?sign=1738850039-Af4m38QJUPgzcSuYxKBlFh1eBrXKeCtP-0-f5fe9f571039f1a35dbd01fc181ec11b)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8162.jpg?sign=1738850039-3bANOSMqIMXQNsg9ftlKD3mFUL5j7Xwa-0-2731c3b647272236d58ba46c6b74fa80)
可见,在本例中,AB和BA完全不同。
3. 矩阵的转置
把一个矩阵的行列互换,所得到的矩阵称为这个矩阵的转置。
设A是一个s×n矩阵:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8165.jpg?sign=1738850039-pudnYsNPqL2gQT1HdoPx2GEbItlwmdfL-0-6b54c44dc0d1ebcb410166487e180967)
s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8167.jpg?sign=1738850039-IOIPMZVAw1tnqVKhYgTnzKaJJ3HTnbcZ-0-2733518dbb91f60973602532be3045fa)
称为A的转置矩阵,记作A′。
【手工计算例8】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8168.jpg?sign=1738850039-ENNxQzjml4568aeq0qgPC05rBZpiLjSG-0-b5ce406a68ef6075cffb1fc58ae3895d)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8169.jpg?sign=1738850039-xRL8VS1CIH18A5QPbwdFn6xBjHorb0Hw-0-0a6f1ca54b8fa701f2ad258055647ac1)