![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
10.3 名校考研真题详解
一、判断题
1.若f(x)恒正连续,且收敛,则必有
( )[上海交通大学研、浙江大学研、南京师范大学2006研]
【答案】错
【解析】举反例:利用反常积分概念,很明显可知满足题意,但是
二、解答题
581.如果广义积分(其中a是瑕点)收敛,那么
收敛.并举例说明命题的逆不成立.[中国科学院研]
证明:由收敛,根据柯西准则,
存在δ>0,只要
,
总有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1374.jpg?sign=1739594998-Mt7pzjuC8jq7gpzBexSqxWRXqpeWyGHq-0-c1a0d65119024d23edba124d3aae8d60)
利用定积分的绝对值不等式,又有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1375.jpg?sign=1739594998-VBkErqRjZ8ZjsocaHTuIr9eE8jKsgHeB-0-4d80ec93e20fdbbb5aa8e118f1cf7079)
再由柯西收敛准则的充分性可知收敛.
命题的逆不成立,例如:
设,令
,则
而由狄利克雷法可以判定
是条件收敛的,从而可知
收敛但
不收敛.
596.积分是否收敛?是否绝对收敛?证明所述结论.[北京大学研]
解:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1384.jpg?sign=1739594998-3XD8u0WIt5S1RR5uuXnuoOYeNTdIrbf4-0-3c29a6bfb1aae7bccbadc4d26a0b0817)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1385.jpg?sign=1739594998-WQYv3OYTwe7KdMDDgmpx2MsKfcs28xIC-0-37a746737a76351afd8b71e256849292)
积分是以x=0为瑕点的瑕积分,因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1387.jpg?sign=1739594998-Qp893ONivp6LhwN6brYN46ZWvf0FC2UI-0-89ac541d81c3ad5d242fe771f0f6282b)
所以与
同阶,所以
收敛.
而,所以
绝对收敛,积分
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1393.jpg?sign=1739594998-3UZyJW1yPrJM7BBRUogCBCH8xeJ2n4kM-0-4ca6adf5c31cdc51f6c5f1c9fd1978e5)
是无穷积分,当x>1时,,可利用
的马克劳林公式得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1397.jpg?sign=1739594998-8OwKFbWsRgsACwmTZ94ESlPfiHAaPmuQ-0-6e81aa1e4d6ab763bc25fe52529acef5)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1398.jpg?sign=1739594998-QxYG6bIBXTgbfjszGGzwrK5mUceVY0LD-0-68270ee802b1f1ac33bad1306da79ac8)
已知条件收敛,而
绝对收敛,所以无穷积分
条件收敛但不绝对收敛.
综合可知:条件收敛.
617.计算积分[武汉大学研]
解:设显然
在SA上可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1406.jpg?sign=1739594998-guR1B3uiX7cJe2aGgka1xKQPrq8Mf1pn-0-91b59d3ca48f58e15bcb5272c808546a)
作半径为a和的
圆D1和D2,使得
,由
有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1412.jpg?sign=1739594998-1EHkVNEUsI6XA015MwLzFPPA4XpfhdZH-0-137954118ed2c4412141437e14426ba3)
而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1413.jpg?sign=1739594998-Ja5nfB6F7ratoo9JO2xsPZ6ZYpZf0SQ6-0-0fea5742340a02b8e68bf543b1b78449)
类似且有
由夹逼原则可得
,
即
所以
1.求[中山大学2007研]
解:由于,所以
绝对收敛.
1.求[南京大学研]
解:令,则原式变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1424.jpg?sign=1739594998-l1yyLEBkSqpxqTR0eHHK6dYhnPHZFBFJ-0-d45d9066b6258ef97b285afa9f26b6c3)
1.设函数f(x)在区间[0,+∞)上连续,0<a<b.
(1)证明:如果,则
(2)证明:如果积分收敛,则
[中北大学研、北京交通大学2006研]
证明:(1)对任意的,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1430.jpg?sign=1739594998-TuiHMxtvYx8RHfvCYEjBXT7uMVRvYQeD-0-1ff875e94634f21b13ec7cadec330ac1)
在上式右端的两个积分中分别进行变量替换ax=t和bx=t,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1431.jpg?sign=1739594998-in7bg7membT8O2ArnmAhemnvd9hukVLZ-0-c3c7b312adc4b240f3a593503e210a95)
由积分第一中值定理,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1432.jpg?sign=1739594998-qUOzIq7NOHF5PrXXPofrNjG2ezd1FeuA-0-49e0eba8085897e936cf173807c27a4b)
其中ξ介于aα与bα之间,η介于aβ与bβ之间.令则同时有
由f(x)的连续性及f(+∞)存在性,即有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1435.jpg?sign=1739594998-oqyc52jgjxKrdKoNxaP4mBBBoFmCIV7Q-0-4e8832793fb91abec044c74e4c683b51)
(2)与(1)的证明完全类似.对任意的,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1437.jpg?sign=1739594998-b255dW55wxqkUryo4NM6jOCMhG4diUdV-0-f04c84cea00676a06f16349157a374eb)
在上式右端的两个积分中分别进行变量替换ax=t和bx=t,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1438.jpg?sign=1739594998-jDOffoIVt900T32uWzZKbFvyNDhhoTxi-0-2244a9e916d0bc4816c1e382fc02c5d8)
由积分第一中值定理,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1439.jpg?sign=1739594998-Hd2CKvZxWQvbadP7oXQJ4eq8LYnHIzrr-0-8cf5136103b8cd9a47be658fea1e06ab)
其中ζ介于aα与bα之间.令,则同时有
由f(x)的连续性及
收敛,即有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1443.jpg?sign=1739594998-GHNMuUzeYoOjFT8LhkewestQTeZrVTFz-0-76fd00de200ab67864dbcb2619f86d5b)
1.设对任意的A>0,f(x)在[0,A]上正常可积,且收敛,令
,
试证明φ(x)在(0,+∞)内至少有一个零点.[南京大学研]
证明:由φ(x)的表达式可知.因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1447.jpg?sign=1739594998-TF1LNQMml1easSgA25dfyXHWMo7LYN5x-0-acc76d9022c3aed7253e2205df35d45d)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1448.jpg?sign=1739594998-SCRVlDEPUcRJ3j94KqrxngJZDr0jn02g-0-a4e719d167e53020e63cb8647df78bb3)
根据连续函数的介值性可得,φ(x)在(0,+∞)内至少有一个零点.
1.讨论的收敛性.[中国地质大学研]
解:令
当α>1时,取δ充分小,使α-δ>1,因为,所以
与
同时收敛,故
收敛.
当α≤1时,由于,所以
与
同时发散,故
发散.
又因为,所以
仅当α-1<1,即α<2时收敛.
综上所述,仅当1<α<2时,积分收敛.
1.讨论的收敛性.[复旦大学研]
解:由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1460.jpg?sign=1739594998-Ga5dUR7UFQ1zfe34zfnqE8E2DW8GWTkA-0-2b06256deb92c2ac87490d2cbf796a2e)
所以当0≤p<q-1时,收敛;当p≥q-1时,
发散.由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1463.jpg?sign=1739594998-Zjfa9SQOios5sS5fJfgMw8wpBf0VAaxe-0-3c88f4c8adcb454fb397a99b7cf3e008)
所以当p>-2时,收敛;当p≤-2时,
发散.故当-2<p<q-1时,
收敛;当p≤-2或p≥q-1时,
发散.
1.f(x)在(0,1]上单调,且广义积分收敛,证明:
存在.[上海大学2006研]
证明:不妨设f(x)在(0,1]上单调递增,则由知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1471.jpg?sign=1739594998-f9KvvZ1gxE8JFNGpgV4WGW1Dw7ghertI-0-5cb01262392c44a916b8bedec29ddb7d)
而故由夹逼法知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1473.jpg?sign=1739594998-kUOfocV1Hlkm7jsqNfOP7deBpEVzQmBR-0-65960389e860c3d7fa14c9ddb7825b64)