![Matlab在水资源优化与水库调度中的应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/610/38401610/b_38401610.jpg)
第1章 分解筛选法求解线性规划的概念和方法及多重解求解
1.1 分解筛选法思路、要点及示例
1.1.1 分解筛选法及有关概念
线性规划法经过多年的发展完善,已趋成熟,其中单纯形法最为著名,但是单纯形法属于指数型算法,因此求解效率不高,并存在着死循环等问题,分解筛选法应运而生。分解筛选法可把一个n维的LP问题分解成n个一维的子LP问题,由此筛选出通过最优解角点的有效约束,并把它看作等价于一个等式约束,利用这一思路和特性,可大大简化整个求解步骤,解决了单纯形法存在的一些问题,有更好的应用前景。
1.1.2 解题步骤
在解题时,使用分解筛选法的思路为:①若线性规划问题非空且有界,则其最优解必在其约束凸集的边界或某一角点上;②最优解所在之角点或相切之边界,其对应的起控制作用的诸约束条件此时必然恰好满足,从而具有等式约束的特性,可用这样的等式通过消元法使问题连续降维;③当多次降维把一个n维的LP问题分解为n个一维子问题时,就可以使用约束超平面在各子问题坐标轴上的截点的概念,来求得这些子问题各自的独立“最优解”,称初优解Z初i,然后选出此n个初优解中最大者(对求最大问题而言)Z初max。可以证明,此最大初优解所对应的子问题和约束方程,就指出了系统最优角点所通过的那些约束之一。一旦找出了这种约束就可如②中所述使问题连续降维;可将步骤重复进行,直至问题降为一维方停止降维,或筛选完了全部m个约束后,即可通过回代求得最后解答。
为了便于说明和具体理解上述思路和步骤,借助算例来阐述,以加深理解。设有一个三维线性规划问题如下例。
例1-1
求:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0002.jpg?sign=1739325841-zu7pZsgd07dzdDG84VjCptjKP78OmroP-0-3182e4a94c6ce2888d9bd6fcd3bf4277)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0003.jpg?sign=1739325841-SeR28afde2KNl5ZYmRoHp4irFcc4xTsn-0-ab4da203dbabb5266bdae816df3ccf07)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0004.jpg?sign=1739325841-pKWiEpBqWA8NYbgvQlZmOhz2oRZA0lu0-0-6e5f95ba94d84a743a08796c901ecd1a)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0005.jpg?sign=1739325841-1MvNQnciTsO7PsOcBBZDNmZ8DrmOvixr-0-51c0272eec4c96a0b896320ccb3b3d08)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0006.jpg?sign=1739325841-a09HUfGwk21N2dMrXSTAdq2dNbQKoRtx-0-7ff49cc8ed45d573f222fed59f065491)
对于此题应先进行一维分解,把此三维问题分解为x1、x2、x3三个一维子问题,并求各子问题之初优解Z初i。为方便和明晰解题思路,解题步骤可以通过列表进行,如表1-1所示。在表1-1含ci的行中,1、2、3为各目标函数式变量的系数,如式(1-1)所列。
表1-1 分解筛选截点IT与Z初计算值
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0007.jpg?sign=1739325841-x5RIiLTUidMB8Tydt6OkOZkM5gFdiBEj-0-e7e48f3da4e5a575a97c14de4fb5c376)
注:∗表示xi列中的最小值,∗∗表示Z初i行中的最大值。
对于每一个子问题,例如对x1子问题,先分别求约束方程(即约束平面)[式(1-2)、式(1-3)、式(1-4)]在x1轴上的截点,此截点是令式(1-2)~式(1-4)中除x1以外的变量均为零时得出的,其表达式为:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0008.jpg?sign=1739325841-J5rlQaTdeMk38Oc0KrUB1CC99RoJsJNg-0-a6e91274b14ded15e3816949e657e9dc)
式中,ITji为第j约束线在第i个变量轴(即xi轴)上的截点值;aji为约束条件式的系数;bj为各约束式右端的常数项;j、i为约束条件和变量的序号。
然后,选xi列诸小于或等于截点值ITji中的最小者(表1-1中数值带∗者),对x1轴而言就是6和其对应的约束式(1-3)。再将此最小截点值6乘以目标函数的对应系数c1得第一子LP问题的初优解Z初1,即Z初1=c1ITjimin。一般有:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0009.jpg?sign=1739325841-cnZr4gzc6paFsKh22tKl12SogE95pA0J-0-1404da40ee4c122a9ce4a4213fb3c649)
由于Z初3=18为表1-1中最大的Z初i,相应的变量为x3,式(1-4)为约束条件,由此可知,全系统的最优解必通过此约束平面式(1-4)。下一步是将式(1-4)看作等式,进而解出x3:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0010.jpg?sign=1739325841-cKBtyzmOSEak7KRrtWsHKd6eTEYtUz87-0-9b71486a6c0c94158a8d4dc7ee83e275)
然后将式(1-8)代入目标函数式和其他约束方程,这样就得到一个降维后的新LP模型:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0011.jpg?sign=1739325841-H1SGh6S0VWfrRu2GNZEf5XodR2ru8H2P-0-863d972d1102ff74d8dbcf3b1955f68a)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0012.jpg?sign=1739325841-w3z0syJDHm1dbnkkLjnicmHUcwIPPtde-0-d7c062a9abcc4042967736fe20cdb649)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0013.jpg?sign=1739325841-QxUMUKz0INLSDAg2841RVyycLAj4G8Qt-0-b6b70d7cdfa67c47e8d747f794f4ad17)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0014.jpg?sign=1739325841-cTmGy8M3dBx4EXIGt9zST87AGh4gMRX6-0-b5cdfb3092d0f689a7238d4c61e97ec1)
该模型与前一个一样,它可再次做一维分解筛选。不过对于目前这一类型,由于为负,且属于退化Ⅰ的情况,故解是简单的,即有
=0,从而又有:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0017.jpg?sign=1739325841-OBau5WFctMknFRFy7c91SBAGg0OPJuw0-0-adf31832431dc108c1fe260b2c745bbc)
把它们回代至式(1-8)中,得,而最优解为:
(x1,x2,x3)∗=(2,0,6),Z∗=20
解毕。
分解筛选法解题流程图如下:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0014_0019.jpg?sign=1739325841-Au57xS9mTcS18EWbpLNGqS11AtiMIIE1-0-9b98c5e363be180e068360333f6c1425)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0014_0020.jpg?sign=1739325841-TE3XXJSqn6tpXaihAkmtgEr0sO9XbLXW-0-8926d7160eefb78d71bde9bd6a467a9f)
若计算时Z初max同时出现在两个以上的列中,则把不同行的相应约束方程都可看成是等式约束,进而可以联解消元。这样,明显可使计算效率提高,简化计算。
例1-2
求:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0021.jpg?sign=1739325841-RxzBjBc1V7TrvwZKO38r0pU5BHnR4y2B-0-e24a29bdd954ac3ce43ae3e12a66cf11)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0022.jpg?sign=1739325841-eSYJjr45Ek6JlmifvxJo0Rs8VHml7ql4-0-624884999fb7042c1afbd4f488664efc)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0023.jpg?sign=1739325841-jCzcOFU7L4laSZ1raofdbDPkjHTCOFcC-0-ac0ac4c2912b61553bb9b7759cb06ffd)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0024.jpg?sign=1739325841-NMrEhyoA38U5rYPN3lvsziok2P9fkXPZ-0-fd9d6c9ed3352576c394f6eb0f3bdce2)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0025.jpg?sign=1739325841-DaBjgC5xjpBaCgxM69mflaXS1YViRDip-0-855df8bb3ffdd86ba8c60c002cda7836)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0026.jpg?sign=1739325841-MbkypiZnJYtyP4gmuL5U1sYsCP9maWbL-0-1709c70c4183aa278ce883a3125c177b)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0027.jpg?sign=1739325841-dacfQ4sfkqIcthx8oOiUNDcXMRQ5pZQj-0-d1aae0999e5f8c79ed718081f398b7cf)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0028.jpg?sign=1739325841-VluusbhbinzVhy9jzUsw1JmH6QEorZiK-0-3f679f91e8af0c0482474ddafebd93d7)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0029.jpg?sign=1739325841-WqKkNJA84x1E0l04Yp1rLxYD4CjuHP3g-0-7be69ce83e742b746a6cc155e8462f30)
在对上面所列九维LP问题进行分解之前,可简单判别出变量x9属于退化Ⅰ(即c9<0,Aj9≥0,j=1,…,9)。故有,并可先行从模型中剔除有x9的项。然后再次分解此八维LP模型,并一一列出所有一维子模型截点值的计算,如表1-2所示。
表1-2 分解筛选法——ITi及Z初i计算
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0031.jpg?sign=1739325841-iuZvtpNZ6dzfNAp6IDYNV3bgB41sJAS6-0-e645266dba7d2c0bbbe682f03287eb6a)
注:右上角有√为该列的最小截点值。
在计算截点值时,凡是约束式中系数为负的部分,不需要计算,因其已不在第一象限,系数为零者,只需要取每列中的最小截值点,故也不必列出。
在表1-2中,Z初max为+0,它同时出现在x2、x3、x5、x6四个子问题中。由此可知,全系统的最优解通过四个相应的约束式[式(1-15)、式(1-16)、式(1-17)、式(1-18)]。把上述四个方程式作为等式联立,通过解出上述的四个变量,可得出下列结果:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0032.jpg?sign=1739325841-c3rXyrjQU2KgeC8JFb7lSPurYCWbhe8e-0-964562a96edadd859e579cf4030291a7)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0033.jpg?sign=1739325841-lHLSg4Gb8G2Nk8oSqtVMDrTmUmmwqb3C-0-956719d48b70a0548cccb8167afe0fb8)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0034.jpg?sign=1739325841-IMTyJOAi6ZHUy9AWeP6jMklE6ZfxSi6b-0-66b6decd5e3f0e7371bdb9dcf763bccc)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0035.jpg?sign=1739325841-Nz87z52BrNnuCVW1daKmxKMgDu9yvWY2-0-9307e68e64f51daafe2bae2e78e129ff)
把式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]代入目标函数式(1-14)、式(1-19)和式(1-21)。由于式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]都只是单变量之间的比例关系,可使式(1-22)必然满足,不需要再次代入引进有关于xi≥0的新约束。于是可得降维后的新LP模型:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0036.jpg?sign=1739325841-GcrudT74glfDNcX827LLZkqEUJzPylCP-0-984355e47e284fd2942185debf37f180)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0037.jpg?sign=1739325841-9DVMp973FGnA2sQSDaJV3EUa7wapAPjt-0-6faddbaccfc181f5768775e17c5f4427)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0038.jpg?sign=1739325841-aijXKBvRHYf0VZIemkP2eYV8qaILnTKh-0-40294b2f8e1379ce8aa68e340bfe2713)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0039.jpg?sign=1739325841-sprJ94mGlTXJq6Ms8GwRp0AXPhrAWs5j-0-50ad9ca5cafde78675fe20d49df85d95)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0040.jpg?sign=1739325841-uUAF7wquD2AqDqZZnz5oiFH8VocZQXnR-0-1f941dfb80892c4ddd386fa85c2aa053)
在上述式中变量x4属于退化Ⅰ条件,故,并可将其在LP模型中剔除。对于新的LP,再次做一维分解筛选表(见表1-3)。
表1-3 一维分解筛选表
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0042.jpg?sign=1739325841-6VULOdIPVmfXiD54uUTIaUhDMU0ry1LN-0-41f503a7e0a221bee402b0ddd820bbf1)
注:右上角有√者为该列的最小截点值。
通过表1-3可得Z初max=500相应的变量为x1,约束式为式(1-19),于是可由式(1-19)解出x1:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0043.jpg?sign=1739325841-mOJJdl8lc6VUceLOQhIcN9nYBd5UwTWg-0-38fe988c3e63fe73215492db1a7b09e7)
再把式(1-19)′代入式(1-14)′、式(1-20)′、式(1-21)′,可得第二次降维后的新LP模型:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0044.jpg?sign=1739325841-fg0jTefYFzLVMYh6buaCc7hcvWXmuY1A-0-2bf9ffc0b822c9342e8cd4fc8f78870a)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0045.jpg?sign=1739325841-K1xB33EPGRPGGImp40W66TZT1y1L4w9q-0-b3f3b8c068a3c5d09c04b08cc3ab19b8)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0046.jpg?sign=1739325841-fOU11zkbHYQ9gDJAc9hZOdJ8UnwxYTCo-0-23fdeecf20e20afa47df2c9166edebbc)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0047.jpg?sign=1739325841-DvOcpv7o7R8Akb6pF9CMAjrNfLfqU28W-0-bb76bb72f5bc3a8cf30dc2d35c72943c)
在上面的新LP模型中,x7符合退化Ⅰ的情况,可知以及x8≤50,在目标式中已无任何未解变量,再将
的值回代到式(1-19)以及式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]和式(1-14)″,可得:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0018_0050.jpg?sign=1739325841-h6seCk4kl35BWynuMYJ2cU8rx1Mk0w4H-0-65feca6d6961e91adb7a7c5dfabee808)
至此解毕。
分解筛选法解题流程图如下:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0018_0051.jpg?sign=1739325841-svGJR1az3ePeJbkWOWyxnm0DlQGM8tnD-0-c5865836182654647affadef3cffe7fe)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0019_0052.jpg?sign=1739325841-8Y6WvDEL7wGFkGd9z94kZgBiBopRN9AA-0-4a201a6f5acdbce2b624a6ff0d2e3137)