![Matlab在水资源优化与水库调度中的应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/610/38401610/b_38401610.jpg)
第1章 分解筛选法求解线性规划的概念和方法及多重解求解
1.1 分解筛选法思路、要点及示例
1.1.1 分解筛选法及有关概念
线性规划法经过多年的发展完善,已趋成熟,其中单纯形法最为著名,但是单纯形法属于指数型算法,因此求解效率不高,并存在着死循环等问题,分解筛选法应运而生。分解筛选法可把一个n维的LP问题分解成n个一维的子LP问题,由此筛选出通过最优解角点的有效约束,并把它看作等价于一个等式约束,利用这一思路和特性,可大大简化整个求解步骤,解决了单纯形法存在的一些问题,有更好的应用前景。
1.1.2 解题步骤
在解题时,使用分解筛选法的思路为:①若线性规划问题非空且有界,则其最优解必在其约束凸集的边界或某一角点上;②最优解所在之角点或相切之边界,其对应的起控制作用的诸约束条件此时必然恰好满足,从而具有等式约束的特性,可用这样的等式通过消元法使问题连续降维;③当多次降维把一个n维的LP问题分解为n个一维子问题时,就可以使用约束超平面在各子问题坐标轴上的截点的概念,来求得这些子问题各自的独立“最优解”,称初优解Z初i,然后选出此n个初优解中最大者(对求最大问题而言)Z初max。可以证明,此最大初优解所对应的子问题和约束方程,就指出了系统最优角点所通过的那些约束之一。一旦找出了这种约束就可如②中所述使问题连续降维;可将步骤重复进行,直至问题降为一维方停止降维,或筛选完了全部m个约束后,即可通过回代求得最后解答。
为了便于说明和具体理解上述思路和步骤,借助算例来阐述,以加深理解。设有一个三维线性规划问题如下例。
例1-1
求:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0002.jpg?sign=1739541369-XmgM7s8sead4O0WH2DpH5yRZvhkRUdbG-0-88b7c4bc4879ef26c9ae2e0d62c5e184)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0003.jpg?sign=1739541369-dfR4sI8jtkPKUUxs16d5ilP4VC4p1J9Y-0-ed8ceae3e8fdbb0754048fbb9ffd8980)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0004.jpg?sign=1739541369-37e72BhRxUlShD2Zr0GEqPHt7YDekFrg-0-e61897b72543bda8de643072dad6b472)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0005.jpg?sign=1739541369-8qMHGayytnyhsbBTa2oQIoDlutgq2Ncm-0-01271ecc0d7199dccaa5a1b09a4f3282)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0006.jpg?sign=1739541369-8sh68S0IWc30ivC0tZv2yKpHAjZ9TTiK-0-58556754a49a8bf0bc9c3c9dd83015bc)
对于此题应先进行一维分解,把此三维问题分解为x1、x2、x3三个一维子问题,并求各子问题之初优解Z初i。为方便和明晰解题思路,解题步骤可以通过列表进行,如表1-1所示。在表1-1含ci的行中,1、2、3为各目标函数式变量的系数,如式(1-1)所列。
表1-1 分解筛选截点IT与Z初计算值
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0007.jpg?sign=1739541369-hkQQnS9llpAvGX6oG3QIU5VxlJD68Xna-0-c9b2d993ddfd0a829df8e6a43eeab09d)
注:∗表示xi列中的最小值,∗∗表示Z初i行中的最大值。
对于每一个子问题,例如对x1子问题,先分别求约束方程(即约束平面)[式(1-2)、式(1-3)、式(1-4)]在x1轴上的截点,此截点是令式(1-2)~式(1-4)中除x1以外的变量均为零时得出的,其表达式为:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0012_0008.jpg?sign=1739541369-xux2nfGNIZEjbeVKcLea2ag3ggEORqTK-0-9a22d1cf770cd2709d00c48f265e1323)
式中,ITji为第j约束线在第i个变量轴(即xi轴)上的截点值;aji为约束条件式的系数;bj为各约束式右端的常数项;j、i为约束条件和变量的序号。
然后,选xi列诸小于或等于截点值ITji中的最小者(表1-1中数值带∗者),对x1轴而言就是6和其对应的约束式(1-3)。再将此最小截点值6乘以目标函数的对应系数c1得第一子LP问题的初优解Z初1,即Z初1=c1ITjimin。一般有:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0009.jpg?sign=1739541369-gAo0dfijHRkQfvb5djpOwTPspDdBEJQh-0-929d4ebba30059b82021d918f5813186)
由于Z初3=18为表1-1中最大的Z初i,相应的变量为x3,式(1-4)为约束条件,由此可知,全系统的最优解必通过此约束平面式(1-4)。下一步是将式(1-4)看作等式,进而解出x3:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0010.jpg?sign=1739541369-VbGp4eQWh4K16q0M8rNFlh93kihBIS2n-0-20d9622fdf0af4f1dc956137b2123109)
然后将式(1-8)代入目标函数式和其他约束方程,这样就得到一个降维后的新LP模型:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0011.jpg?sign=1739541369-S6ypk7a1RSfvXuEPZGx1602be6IBFBVi-0-19ffeac8bb002956bae5f7bf21f32068)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0012.jpg?sign=1739541369-le11ehM8il9gbexf5U3ZPNCxTJz0g8rG-0-b029b7f715fdcf8023565b4004a00569)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0013.jpg?sign=1739541369-2NLjyzNtVCk9nqzf2qMnBc9AlCc7aBHm-0-32ae116d72bed247ae6bb0f172295782)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0014.jpg?sign=1739541369-eqTwoCmXDhdqHERduMuT8fMpvidB7ZO2-0-3657f12246a2b9a1b4e42ab2c6fba406)
该模型与前一个一样,它可再次做一维分解筛选。不过对于目前这一类型,由于为负,且属于退化Ⅰ的情况,故解是简单的,即有
=0,从而又有:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0013_0017.jpg?sign=1739541369-rKuR3Fyb9jhIBj8WZ98QvlbKL07p91Ma-0-caf175497aa4d3b11195bdbbc2a9bb01)
把它们回代至式(1-8)中,得,而最优解为:
(x1,x2,x3)∗=(2,0,6),Z∗=20
解毕。
分解筛选法解题流程图如下:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0014_0019.jpg?sign=1739541369-6OfSa9G8WgRYvo2WbB2TRr2RkSTUpQAt-0-72c479a730c0ce51a346cc7d5e06ee83)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0014_0020.jpg?sign=1739541369-FUK2VgS435BlGkTLm1lVHwlaAq0HsIwG-0-c4a56046031711940a33094802e64298)
若计算时Z初max同时出现在两个以上的列中,则把不同行的相应约束方程都可看成是等式约束,进而可以联解消元。这样,明显可使计算效率提高,简化计算。
例1-2
求:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0021.jpg?sign=1739541369-qEskWl0y8aOPe8lYR7a4vO7leDVwV1W9-0-4f51a4ab06062e575dbca86d49e922a5)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0022.jpg?sign=1739541369-qJ8e6RFWkTZOUceAPfEAuXnPigrub8mo-0-291257f3946373b18e51ffe560d73fa2)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0023.jpg?sign=1739541369-akC8PfXmjBvVWtPuWR0W3VBWtv5O6CYx-0-1e26939567879a509cb29d308ac1ccbb)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0024.jpg?sign=1739541369-zRU6Am4rb98EMLBa9gRXrLaoBhqVoFj9-0-4b6f032b913896b3ae0c8f4f6169648c)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0025.jpg?sign=1739541369-wrnCHVgTsBFu25wi0rciyrjZQpLWbzw6-0-72b672ee7a06e2f1d1b521c67ab867c1)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0026.jpg?sign=1739541369-HpVs9EWp4TRPytRpyddS8gktaORvC7wz-0-c5335e13618b724795d5bff6f0b89eaa)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0027.jpg?sign=1739541369-30MK29KPOM6Ug9pgLvhZ39DBbm0ExkAX-0-c2ee5cb00959405a56fb6a9da34105f9)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0028.jpg?sign=1739541369-DZqZ38a3LMyF9CS5GBfIe40MevvgTdNH-0-aed8b980a2cdc44bff592e656462cc5a)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0015_0029.jpg?sign=1739541369-lxm9XMoxRNcTfxATDzq5XrKB4x8mamFT-0-853f2c236d3318c74c6ff7953ac6050e)
在对上面所列九维LP问题进行分解之前,可简单判别出变量x9属于退化Ⅰ(即c9<0,Aj9≥0,j=1,…,9)。故有,并可先行从模型中剔除有x9的项。然后再次分解此八维LP模型,并一一列出所有一维子模型截点值的计算,如表1-2所示。
表1-2 分解筛选法——ITi及Z初i计算
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0031.jpg?sign=1739541369-V9ihMUJ1ANNfZkEyTU7GELQRrC39Xjzg-0-16f46268d0b0d5ca333715e5040711d0)
注:右上角有√为该列的最小截点值。
在计算截点值时,凡是约束式中系数为负的部分,不需要计算,因其已不在第一象限,系数为零者,只需要取每列中的最小截值点,故也不必列出。
在表1-2中,Z初max为+0,它同时出现在x2、x3、x5、x6四个子问题中。由此可知,全系统的最优解通过四个相应的约束式[式(1-15)、式(1-16)、式(1-17)、式(1-18)]。把上述四个方程式作为等式联立,通过解出上述的四个变量,可得出下列结果:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0032.jpg?sign=1739541369-JuKaJYyfLCu0gxp5j9zOo313j3IsDLSL-0-35cc79482ae707d1267d88d9751d64b0)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0033.jpg?sign=1739541369-7BF4QlpU6w2hiJMxLy1eYbjCKxjTainw-0-118acf1d2f643137bd010ef1c527cdd1)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0034.jpg?sign=1739541369-np0MwPXzx7sqYD5CviXpiwsPckVQy8DM-0-59781f4a60039c6672ef2c8cd4736f26)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0016_0035.jpg?sign=1739541369-zNkyZBWMeBB3h5q0knrBcJ00GJ8eLiGh-0-ac9d12a07e661ba4188c3c11eddaae23)
把式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]代入目标函数式(1-14)、式(1-19)和式(1-21)。由于式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]都只是单变量之间的比例关系,可使式(1-22)必然满足,不需要再次代入引进有关于xi≥0的新约束。于是可得降维后的新LP模型:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0036.jpg?sign=1739541369-WqUSCo6qZinEg1xphi3hFA5PKB1sa16I-0-99f9b9ffbb4031f1c8376d95df6626ca)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0037.jpg?sign=1739541369-i8k2AkTXNPKOg2UrpeKHvjPSlEKQ7Jwd-0-42be291dde91c150d85b9b4cef1c47c8)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0038.jpg?sign=1739541369-I9KYPjN2AqK3ibWRu7O4kpxptjqlEWqp-0-c834be05a47485930322c76d70c06503)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0039.jpg?sign=1739541369-n89eY6AYeRZsVtqqtAnw2juzVxVkGwZH-0-243d491242f30ae1257d200eb160b9c7)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0040.jpg?sign=1739541369-fFqhIZDUcKgNKSImfg6swkDobT8UeppW-0-8b379843e6023bdeb296c0caba609e0a)
在上述式中变量x4属于退化Ⅰ条件,故,并可将其在LP模型中剔除。对于新的LP,再次做一维分解筛选表(见表1-3)。
表1-3 一维分解筛选表
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0042.jpg?sign=1739541369-wgxcyxTt0igI5j5PESlvjDpMjQllRSqy-0-494aa4a8f83b2cec16222565d74beddd)
注:右上角有√者为该列的最小截点值。
通过表1-3可得Z初max=500相应的变量为x1,约束式为式(1-19),于是可由式(1-19)解出x1:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0043.jpg?sign=1739541369-qeMUt5ilH6EBCWbSpZfbDZJiIBn79oaY-0-9f6abde64e4c58c7e9a08fadddf95cdd)
再把式(1-19)′代入式(1-14)′、式(1-20)′、式(1-21)′,可得第二次降维后的新LP模型:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0044.jpg?sign=1739541369-QOJ2C0q5KYHrvuAOuRnwNVoj0RdHp5he-0-80c21a0a6e84549a5de1ebb89dca6ec0)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0045.jpg?sign=1739541369-ueZ3ud0kRw52PCMRPmGjhWtQcHUsaQ2v-0-ce8d135c8bb23a6e4401872d3955e2d2)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0046.jpg?sign=1739541369-Xfiob3pHbPbPWPNKp7aS3x6ArbecYCaU-0-62a33020c0ff15cb60e130186de1a907)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0017_0047.jpg?sign=1739541369-RYfDr2mIPmy5n42fuD8Ad7xC8CquVxZm-0-3ccb2c18d3cb539a75aba6cde76ea319)
在上面的新LP模型中,x7符合退化Ⅰ的情况,可知以及x8≤50,在目标式中已无任何未解变量,再将
的值回代到式(1-19)以及式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]和式(1-14)″,可得:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0018_0050.jpg?sign=1739541369-x9c8GVthNuJF8cbj27fbeiCE3zuKqTGA-0-faa384569baa92709b1b947b1f55401d)
至此解毕。
分解筛选法解题流程图如下:
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0018_0051.jpg?sign=1739541369-jsVN5WglQQzUQBDLpazkgLIIdlQecUGz-0-3ee853a9c312b1bd5ac778330a80c396)
![](https://epubservercos.yuewen.com/300876/20215408808190006/epubprivate/OEBPS/Images/9787513663991_0019_0052.jpg?sign=1739541369-P4GiRft7MudgBDN42oB9o14SRH47Umqc-0-7dd577a5596fdf55c5a5b21273264bdc)